About Noneigenvector Source Localization Methods
نویسندگان
چکیده
Previous studies dedicated to source localization are based on the spectral matrix algebraic properties. In particular, two noneigenvector methods, namely, propagator and Ermolaev and Gershman (EG) algorithms, exhibit a low computational load. Both methods are based on spectral matrix structure. The first method is based on the spectral matrix partitioning. The second one obtains directly an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. It has been shown that these algorithms are efficient in nonnoisy or high signal to noise ratio (SNR) environments. However, both algorithms will be improved. Firstly, propagator is not robust to noise. Secondly, EG algorithm that requires the knowledge of a threshold value between largest and smallest eigenvalues, which are not available as eigendecomposition, is not performed. In this paper, we aim firstly at demonstrating the usefulness of QR and LU factorizations of the spectral matrix for these methods and secondly we propose a new way to reduce the computational load of a high resolution algorithm by estimating only the needed eigenvectors. For this, we adapt fixed-point algorithm to compute only the leading eigenvectors. We evaluate the performance of the proposed methods by a comparative study.
منابع مشابه
Combination of Beamforming and Synchronization Methods for Epileptic Source Localization, using Simulated EEG Signals
Localization of sources in patients with focal seizure has recently attracted many attentions. In the severe cases of focal seizure, there is a possibility of doing neurosurgery operation to remove the defected tissue. The prosperity of this heavy operation completely depends on the accuracy of source localization. To increase this accuracy, this paper presents a new weighted beamforming method...
متن کاملHigh-Resolution Source Localization Algorithm Based on the Conjugate Gradient
This paper proposes a new algorithm for the direction of arrival (DOA) estimation of P radiating sources. Unlike the classical subspace-based methods, it does not resort to the eigendecomposition of the covariance matrix of the received data. Indeed, the proposed algorithm involves the building of the signal subspace from the residual vectors of the conjugate gradient (CG) method. This approach...
متن کاملThe impact of wind-generated bubble layer on matched field sound source localization in shallow water (Research Article)
This paper investigates the effect of the wind-generated bubble layer on the underwater sound source localization in the Persian Gulf shallow-water environment through computer simulation and the matched field processing technique. An underwater sound source of 2-10 kHz located at depths of 10, 45, and 75 m was considered at a distance of 4 km from a linear vertical receiver array. The estimati...
متن کاملOptimizing the Event-based Method of Localization in Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a wireless decentralized structure network consists of many nodes. Nodes can be fixed or mobile. WSN applications typically observe some physical phenomenon through sampling of the environment so determine the location of events is an important issue in WSN. Wireless Localization used to determine the position of nodes. The precise localization in WSNs is a co...
متن کاملMultiple Sound Source Localization Based on Inter-Channel Correlation Using a Distributed Microphone System in a Real Environment
In real environments, the presence of ambient noise and room reverberations seriously degrades the accuracy in sound source localization. In addition, conventional sound source localization methods cannot localize multiple sound sources accurately in real noisy environments. This paper proposes a new method of multiple sound source localization using a distributed microphone system that is a re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008